An international delegation talked Vietnam out of nuclear power

A convincing list of arguments persuaded Vietnam to change its mind

Vietnam had been planning to build 14 nuclear reactors, with the first provided by Russia. But on November 22, 2016 the country abruptly canceled its nuclear energy plans. This occurred shortly after an international delegation visited officials and presented them with the “road map” below. Originally titled, Nuclear Power in Vietnam: challenges and alternatives, this article was based on scientific information, experiences from Germany, Japan and South Africa, and two workshops on “Nuclear power development in Vietnam and worldwide”, organized in Hanoi in early October 2016 . This is a deterrence road map that every country considering a nuclear power program should read.

The full list of authors can be found at the end of the article. One of them, Nguy Thi Khanh of Vietnam, won this year’s Goldman Environmental Prize in part for this work. Although Vietnam has now signed a “framework agreement” with India that includes nuclear energy, this appears to be for a “research reactor.” Commercial nuclear power for electricity remains unlikely. 

Twelve compelling arguments against nuclear power in Vietnam

1. Laws and security regulations must be secured in advance 

As nuclear power is one of the most dangerous technologies ever invented, the strictest possible safety laws have to be adopted, and regularly updated, in order to prevent accidents. Beside the two “meltdowns” in Chernobyl and Fukushima, more than 30 accidents have been categorised according to the International Nuclear Event Scale (INES), and countless smaller accidents have not been recorded internationally.

Laws and regulations regulating security concerns have to be adopted before the concrete planning phase of nuclear power plants begins. They need to cover the whole nuclear life-cycle, including a comprehensive plan for nuclear waste storage. Special attention needs to be paid to policy coherency, i.e. consistency with other relevant laws.

A clear division of tasks is crucial to avoid overlaps and loopholes in decision-making processes. This division of tasks needs to be clear for the operation of nuclear sites (plants, transport ways, and waste storage) and a clear chain of command is especially important in case of accidents.

2. Decision-making must be independent

All major decisions need to be taken by an independent regulatory authority, whose utmost concern is security, not the promotion of nuclear power. An authority which is interested in its own economic benefit or in research, and therefore promotes nuclear power, is likely to underestimate costs and risks, and to overestimate the benefits of nuclear energy, as many international examples show.

3. Transparency is essential

Transparency by government in relation to the wider public is crucial, while citizens living close to nuclear facilities have to be informed continuously, and should ideally be involved in decision-making procedures. As many international examples show, if state agencies do not disclose all relevant information regarding nuclear power to the wider public, the trust in those institutions can easily be jeopardised.

Special attention has to be paid to information campaigns for citizens living close to nuclear power plants, nuclear waste storage, and transport routes of nuclear fuel and waste. They need to be informed about potential risks, and about emergency plans. In order to increase the trust of those citizens, participatory decision making models have proven successful.

4. Sufficient funding must be secured up front

Before nuclear power production is considered, sufficient funds have to be secured by the state as well as by private energy providers. Usually, the state will finance all necessary agencies involved in the political oversight of, as well as the planning, maintenance, and control of all nuclear sites (i.e. also the exploration of nuclear waste sites). The energy provider should – from the beginning of operations onwards – set aside funds to cover the full life cycle costs of nuclear power, including the dismantling of the power plants, and the transportation and storage of nuclear waste over centuries.

Those funds need to be secured in case of the possible insolvency of the energy provider. Whether the state, the energy provider, or both cover the interest payments on international credits for the construction of the plants, the training of staff, the information and emergency planning for the public, and of insurances and compensation schemes in case of accidents has to be clarified before a decision for or against nuclear power production is taken on a political level.

Even if all those national governance measures are in place, nuclear power means a dependency on foreign countries for many decades. Countries like Vietnam, which will not control the whole value chain of nuclear power production by itself, will always be dependent on foreign investors in order to receive and reprocess nuclear fuel, or to educate staff members working in the nuclear power plants.

5. Social and environmental impacts must be carried out before approval

Strategic impact assessments on a policy making level to consider the social and environmental impacts of the whole life-cycle of nuclear power (including power plants, waste storage sites, and transport routes) shall be conducted to decide whether nuclear power should be introduced or not. In case of a decision in favour of nuclear energy, comprehensive environmental and social impact assessment and feasibility studies for each project site, including meaningful public consultation, should be carried out.

Vietnam scenery Wikicommons

Vietnam could start with energy efficiency but is also ideal for renewables

These assessments must include the baseline study on health and environment. The impact on local economy is a crucial aspect of social impact. The negative impact on existing local industry and impact due to resettlement should be also assessed. A transparent social and environmental impact management plan should be disclosed for the public in advance and enforced during the whole life-cycle of a nuclear power plant.

6. Rigid safety standards should be implemented

Safety checks by an independent nuclear regulatory authority should continuously be conducted to prevent accidents. Health check-ups for workers and communities should be also mandatory.

Furthermore, continuous monitoring of the impact on the surrounding environment and radiation level is needed. The monitoring information should be accessible to citizens to ensure transparency and safety.

Strict safety standards should also be applied to the selection of reactor types – incorporating the principles of multiple barriers, diversification and redundancies for all parts of the building – and other construction work.

All nuclear facilities need to be secured against possible terrorist attacks. There is the dual risk of international terrorist networks stealing radioactive materials (possibly also from waste storage or during transport), and using it for so called “dirty bombs”; and terrorists trying to destroy a nuclear power plant, for example by crashing an aeroplane into a reactor. In fact, not even the very solid German nuclear power plants could withstand an attack by aeroplanes.

7. Training and emergency preparation can take years 

Because staff at nuclear power plants have to be very well trained, very few local residents are usually able to work there. Even in countries with a very high academic education level, the training of staff for nuclear power plants takes several years, because of high safety standards.

This is after training facilities (simulators, research reactors, etc.,) have been created and trainers have been trained. If staff members are to be trained abroad, for example in Russia and Japan, difficulties could result because of the different languages and training styles in both countries. It should also be clarified when foreign investors will pull out, and hand over operations to local staff only.

Preparation for accidents, including the emergency plans, evacuation plans, and radiation protection schemes for victims should be approved, and made public, beforehand. There should be emergency plans including back-up solutions for loss of energy (also to prevent severe accidents in other power plants, if a nuclear plant suddenly goes off the grid), as well as radiation protection plans.

Specialised staff outside the nuclear facilities (such as specialised nurses or firefighters) need to be trained, and emergency equipment, such as iodine tablets, have to be stored, and regularly replaced. Staffs and local communities must engage in evacuation drills and evacuation plans should be effectively communicated to the local people.

These plans should reflect a thorough review of the previous accidents including Fukushima and Chernobyl. Continuous monitoring of the health of the affected citizens and environment after the accident is needed.

After severe accidents, sufficient funds for adequate compensation and for clean-up need to be secured. Once an accident happens, it would affect not only the nearby communities or workers but also wider economic activities, public health and the ecosystem.


The cost of a nuclear accident such as Fukushima is high, and problems like radioactive contamination can become unsolvable.

Beside the funds needed for fixing the accident, covering the extra costs for power production (possibly by imports), and for decontamination, compensation schemes have to be set up to cover the costs associated with compensation for staff members of the power plant; citizens losing their livelihood, relocation, health checks and treatment (including future generations), the loss/severe injury of family members, as well as for affected industries which have to limit or stop production as a result of the accident.

Throughout the entire process of a nuclear power installation, people’s rights to information must be ensured and a grievance system should be created. At any stage, the safety of people and the environment must be prioritised.

8. Life-cycle costs require a huge financial commitment by the state

Nuclear energy requires a very large financial commitment by the state, creating financial burdens instead of benefits, if the whole lifecycle is taken into account. Many countries chose to invest in nuclear power, not for economic reasons, but for prestige or energy security. Accordingly, nuclear power production is heavily subsidised by the state.

Countries which cannot create the whole value chain of nuclear production (development of plant technology, construction of reactors, training staff, production and reprocessing of fuel, etc.) will have even less economic benefits, and become more dependent on foreign support.

But even technologically advanced countries such as the US or Germany, which tried to establish the whole value chain, greatly underestimated the lifecycle costs of nuclear energy, and are now confronted with huge financial burdens.

9. Overnight costs are typically underestimated

The so-called “overnight costs” are typically underestimated, and other life-cycle costs are not taken into account. Reactor vendor companies only quote the overnight cost as the price of their reactors. Overnight costs include only what are called EPC costs, for engineering, procurement and construction, added to “owner’s costs” comprised of land, licencing, testing, training, and project management.

Overnight costs are essentially the costs spent up to the time of switching on the reactor: preparing the land, undertaking the construction and training the workforce. The two reactors being built in the UK by EDF with Chinese finance at Hinkley Point C are estimated to have a full cost of US$57-billion, of which construction accounts for $22,3-billion and finance at least $8-billion. Here, the estimated full costs are 255% more than the construction costs.

Overnight costs typically do not include twelve categories of life-cycle costs which have to be covered by the state budget, and collected from energy consumers or tax payers. As mentioned in earlier, it is advisable to oblige the private energy providers to set up funds to cover at least a part of these costs by law.

10. Cost over-runs are routine

It should be noted that the nuclear construction industry is well known for cost overruns, and extension of time for construction. There are large differences in cost between the original and final quotes. For example, Areva/Siemens is building a nuclear power plant at Olkiluoto in Finland. Construction began in 2005, but the project is still under construction and is now running ten years overdue.

The cost began at $3.6-billion but is now estimated to be $9.5-billion. Currently the clients are in a $11-billion legal battle challenging the cost and time overruns. The example of Olkiluoto is typical of the nuclear industry.

11. Cost estimates don’t account for accidents

All these costs will be incurred during the safe operation of a reactor, i.e. there will be considerably higher costs in case of severe accidents. If there are accidents or damaging incidents, the costs of clean-up will be considerable. Estimates given for the costs of clean-up of the Fukushima accident are currently about US$131-billion.

Against this background, is it impossible to calculate a realistic price for a kWh of nuclear energy today; this is only possible after the last power plant has been shut down (to see whether any severe accidents occurred), and after radiation of nuclear material has ceased (after up to 244 000 years).

This is a very different calculation from the costs for running coal-fired power plants (although, also here, the costs for social and environmental impacts, and costs arising from climate change can only be roughly estimated). The costs for renewables, which do not leave any costly waste, and where building materials (such as concrete and metals), can be easily recycled, are far easier to predict.

Ruong bac thang tren nui dep xanh muot

Vietnam, a largely rural country, has rejected nuclear power for now.

12. Alternatives to nuclear power

It is time to consider alternative energy solutions. What energy source would be the best alternative for nuclear power?

• The new generation of nuclear power plants is not an alternative: Some nuclear energy experts affirm that the new generations of reactors (3+ and 4) are safer and can solve the shortcoming of old generations (1, 2 and 3). However, the construction of generation 3+ reactors has been considerably delayed due to unforeseen technical challenges in Finland and France. And up to now, there is no Generation 4 reactor connected to the grid, and this technology will be available in the 2030s at the earliest.

• Coal power should not be a solution: Coal mining and coal burning cause severe environmental impacts, comprising water, soil and air pollution, which negatively affect the livelihoods and health of people, the economy, and ecosystems. An increase in coal power production will also result in an increase in greenhouse gas emissions, which is a severe problem for countries most vulnerable to climate change. In addition to that, reliance on imported coal will also create dependencies, and threaten energy security.

Considering the disadvantages of both coal and nuclear power production, the cheapest and most sustainable kWh is always the one that does not need to be produced. So accelerating energy saving and energy efficiency should be the first and easiest measure to replace nuclear power in Vietnam.

Applying energy efficiency solutions could have the potential to save $45- to 50-billion from investing in building new power plants.

In addition, restructuring the growth model towards low carbon development would also contribute significant added value for the success of energy efficiency solutions.

Last but not least, renewable energy (RE) is the best new energy technology for Vietnam. Because of technical feasibility, economical benefit and available finance, there has been a boom of global RE production in recent years.

Compared with both coal and nuclear power, renewable energy has nine advantages for Vietnam.


The disadvantages of nuclear power clearly outweigh its advantages – especially because some often-cited advantages do not hold true. A clear advantage of nuclear power is its high capacity to produce electricity in a relatively small area (if one does not take the space for waste storage into account). Nevertheless, in addition to the disadvantages described above, nuclear power does not have the advantages its proponents often emphasise.

An increase in nuclear energy production cannot mitigate climate change. Because the construction of nuclear power plants takes many years (about 10 years or more), and the time span to limit global temperature increase to 1,5°C is very limited, a drastic increase of nuclear energy production would simply come too late.

According to studies by the International Energy Agency (IAE), nuclear power could only contribute 6% of the necessary mitigation measures to reduce greenhouse gas emissions until 2050.

Nuclear power does not provide energy security. Due to its complex technical features, nuclear power plants are susceptible to faults and errors. Even if no incidents occur over a longer period, the reactors regularly have to be shut down for maintenance, or to be partly reconstructed in order to abide by new security regulations. During those shutdowns, which can last for several months, the stability of the grid has to be secured and alternative power generated.

Nuclear power is not a source of technological innovation. Very little innovation in the field of science and technology has come from research into nuclear power. On the contrary, expenses for nuclear power production and research could have been used in far more productive fields of science.

In addition to the many disadvantages of nuclear power, its necessity seems questionable. The decision of many countries (such as South Africa and Germany) to start nuclear power production was based on high estimates of future energy needs, which later turned out to be exaggerated, because the increasing potential for energy efficiency and energy savings had not been taken into account.

Against this background, the question should be raised whether nuclear energy production really pays off particularly when it will only generate such a small percentage of the country’s electricity needs.

A version of this article was first published in Articles: EE Publishers, Articles: Energize where you will also find the list of notes and references.The full list of authors comprises: Klaus-Peter Dehde, Germany; Kanna Mitsuta, Friends of the Earth, Japan; Dr. David Fig, Biowatch, South Africa; Nguy Thi Khanh, Green Innovation and Development Centre; and Dr. Sonja Schirmbeck, Friedrich Ebert Stiftung.

A backgrounder on Vietnam’s nuclear odyssey, by Jim Green, can be found here.

If you’d like to be the first to read stories like these, sign up for our Monday email digest. We will send you a very brief synopsis of the new stories on our site, with links to read them and learn more. Sign up today!

%d bloggers like this: